Tap the blue circles to see an explanation.
$$ \begin{aligned}d^2\frac{v}{d}t& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{d^2v}{d}t \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{d^2tv}{d}\end{aligned} $$ | |
① | Step 1: Write $ d^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} d^2 \cdot \frac{v}{d} & \xlongequal{\text{Step 1}} \frac{d^2}{\color{red}{1}} \cdot \frac{v}{d} \xlongequal{\text{Step 2}} \frac{ d^2 \cdot v }{ 1 \cdot d } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ d^2v }{ d } \end{aligned} $$ |
② | Step 1: Write $ t $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{d^2v}{d} \cdot t & \xlongequal{\text{Step 1}} \frac{d^2v}{d} \cdot \frac{t}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ d^2v \cdot t }{ d \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ d^2tv }{ d } \end{aligned} $$ |