Tap the blue circles to see an explanation.
$$ \begin{aligned}ai\frac{b}{a}+ib& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{abi}{a}+ib \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2abi}{a}\end{aligned} $$ | |
① | Step 1: Write $ ai $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} ai \cdot \frac{b}{a} & \xlongequal{\text{Step 1}} \frac{ai}{\color{red}{1}} \cdot \frac{b}{a} \xlongequal{\text{Step 2}} \frac{ ai \cdot b }{ 1 \cdot a } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ abi }{ a } \end{aligned} $$ |
② | Step 1: Write $ bi $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |