Tap the blue circles to see an explanation.
$$ \begin{aligned}9 \cdot \frac{i}{6-8i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}9 \cdot \frac{-4+3i}{50} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{27i-36}{50}\end{aligned} $$ | |
① | Divide $ \, i \, $ by $ \, 6-8i \, $ to get $\,\, \dfrac{-4+3i}{50} $. ( view steps ) |
② | Step 1: Write $ 9 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 9 \cdot \frac{-4+3i}{50} & \xlongequal{\text{Step 1}} \frac{9}{\color{red}{1}} \cdot \frac{-4+3i}{50} \xlongequal{\text{Step 2}} \frac{ 9 \cdot \left( -4+3i \right) }{ 1 \cdot 50 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -36+27i }{ 50 } = \frac{27i-36}{50} \end{aligned} $$ |