Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{9}{45}-\frac{45}{45}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{ 9 : \color{orangered}{ 9 } }{ 45 : \color{orangered}{ 9 }} - \frac{ 45 : \color{orangered}{ 45 } }{ 45 : \color{orangered}{ 45 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{5}-\frac{1}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{1}{5}-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-\frac{4}{5}\end{aligned} $$ | |
① | Divide both the top and bottom numbers by $ \color{orangered}{ 9 } $. |
② | Divide both the top and bottom numbers by $ \color{orangered}{ 45 } $. |
③ | Remove 1 from denominator. |
④ | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract fractions they must have the same denominator. |