Tap the blue circles to see an explanation.
$$ \begin{aligned}7\cdot(0.5+i\cdot0.866025404)\cdot2\cdot(0.866025404+i\cdot0.5)& \xlongequal{ }7\cdot(0.5+0i)\cdot2\cdot(0.866025404+0i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(0+0i)\cdot2\cdot(0.866025404+0i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(0+0i)\cdot(0.866025404+0i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}0+0i+0i+0i^2 \xlongequal{ } \\[1 em] & \xlongequal{ }0 \cancel{0i} \cancel{0i}0i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}0\end{aligned} $$ | |
① | Multiply $ \color{blue}{7} $ by $ \left( 00i\right) $ $$ \color{blue}{7} \cdot \left( 00i\right) = 00i $$ |
② | $$ \left( \color{blue}{00i}\right) \cdot 2 = 00i $$ |
③ | Multiply each term of $ \left( \color{blue}{00i}\right) $ by each term in $ \left( 00i\right) $. $$ \left( \color{blue}{00i}\right) \cdot \left( 00i\right) = 0 \cancel{0i} \cancel{0i}0i^2 $$ |
④ | Combine like terms: $$ 0 \, \color{blue}{ \cancel{0i}} \, \, \color{blue}{ \cancel{0i}} \,0i^2 = 0 $$ |