Tap the blue circles to see an explanation.
$$ \begin{aligned}6-\frac{-4}{12}-(-8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{72+4}{12}-(-8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{76}{12}-(-8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 76 : \color{orangered}{ 4 } }{ 12 : \color{orangered}{ 4 }} - \left(-8\right) \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{19}{3}-(-8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{43}{3}\end{aligned} $$ | |
① | $$ 6-\frac{-4}{12}
= 6 \cdot \color{blue}{\frac{ 12 }{ 12}} - \frac{-4}{12} \cdot \color{blue}{\frac{ 1 }{ 1}}
= \frac{72+4}{12} $$ |
② | $$ \color{blue}{72} + \color{blue}{4} = \color{blue}{76} $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 4 } $. |
④ | Step 1: Write $ -8 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract fractions they must have the same denominator. |