Tap the blue circles to see an explanation.
$$ \begin{aligned}6 \cdot \frac{5+5i}{-2i}\cdot3i^5& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6 \cdot \frac{5+5i}{-2i}\cdot3i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6 \cdot \frac{-5+5i}{2}\cdot3i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{30i-30}{2}\cdot3i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{90i^2-90i}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-90-90i}{2}\end{aligned} $$ | |
① | $$ 3i^5 = 3 \cdot i^{4 \cdot 1 + 1} =
3 \cdot \left( i^4 \right)^{ 1 } \cdot i^1 =
3 \cdot 1^{ 1 } \cdot i =
3 \cdot i $$ |
② | Divide $ \, 5+5i \, $ by $ \, -2i \, $ to get $\,\, \dfrac{-5+5i}{2} $. ( view steps ) |
③ | Step 1: Write $ 6 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 6 \cdot \frac{-5+5i}{2} & \xlongequal{\text{Step 1}} \frac{6}{\color{red}{1}} \cdot \frac{-5+5i}{2} \xlongequal{\text{Step 2}} \frac{ 6 \cdot \left( -5+5i \right) }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -30+30i }{ 2 } = \frac{30i-30}{2} \end{aligned} $$ |
④ | Step 1: Write $ 3i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{30i-30}{2} \cdot 3i & \xlongequal{\text{Step 1}} \frac{30i-30}{2} \cdot \frac{3i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 30i-30 \right) \cdot 3i }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 90i^2-90i }{ 2 } \end{aligned} $$ |
⑤ | $$ 90i^2 = 90 \cdot (-1) = -90 $$ |