Tap the blue circles to see an explanation.
$$ \begin{aligned}6\cdot(-7+6i)\cdot(-4+2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(-42+36i)\cdot(-4+2i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}168-84i-144i+72i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}72i^2-228i+168\end{aligned} $$ | |
① | Multiply $ \color{blue}{6} $ by $ \left( -7+6i\right) $ $$ \color{blue}{6} \cdot \left( -7+6i\right) = -42+36i $$ |
② | Multiply each term of $ \left( \color{blue}{-42+36i}\right) $ by each term in $ \left( -4+2i\right) $. $$ \left( \color{blue}{-42+36i}\right) \cdot \left( -4+2i\right) = 168-84i-144i+72i^2 $$ |
③ | Combine like terms: $$ 168 \color{blue}{-84i} \color{blue}{-144i} +72i^2 = 72i^2 \color{blue}{-228i} +168 $$ |