Tap the blue circles to see an explanation.
$$ \begin{aligned}5i^2\cdot(4-4i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-5\cdot(4-4i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-20+20i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}20i-20\end{aligned} $$ | |
① | $$ 5i^2 = 5 \cdot (-1) = -5 $$ |
② | Multiply $ \color{blue}{-5} $ by $ \left( 4-4i\right) $ $$ \color{blue}{-5} \cdot \left( 4-4i\right) = -20+20i $$ |
③ | Combine like terms: $$ 20i-20 = 20i-20 $$ |