Tap the blue circles to see an explanation.
$$ \begin{aligned}4 \cdot \frac{i}{3}-i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4i}{3}-i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{i}{3}\end{aligned} $$ | |
① | Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4 \cdot \frac{i}{3} & \xlongequal{\text{Step 1}} \frac{4}{\color{red}{1}} \cdot \frac{i}{3} \xlongequal{\text{Step 2}} \frac{ 4 \cdot i }{ 1 \cdot 3 } \xlongequal{\text{Step 3}} \frac{ 4i }{ 3 } \end{aligned} $$ |
② | Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |