Tap the blue circles to see an explanation.
$$ \begin{aligned}4(x-1)(x-3)(x+2i+2)(x-2i+2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(4x-4)(x-3)(x+2i+2)(x-2i+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(4x^2-12x-4x+12)(x+2i+2)(x-2i+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(4x^2-16x+12)(x+2i+2)(x-2i+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}(8ix^2+4x^3-32ix-8x^2+24i-20x+24)(x-2i+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}-16i^2x^2+4x^4+64i^2x-48i^2-36x^2-16x+48\end{aligned} $$ | |
① | Multiply $ \color{blue}{4} $ by $ \left( x-1\right) $ $$ \color{blue}{4} \cdot \left( x-1\right) = 4x-4 $$ |
② | Multiply each term of $ \left( \color{blue}{4x-4}\right) $ by each term in $ \left( x-3\right) $. $$ \left( \color{blue}{4x-4}\right) \cdot \left( x-3\right) = 4x^2-12x-4x+12 $$ |
③ | Combine like terms: $$ 4x^2 \color{blue}{-12x} \color{blue}{-4x} +12 = 4x^2 \color{blue}{-16x} +12 $$ |
④ | Multiply each term of $ \left( \color{blue}{4x^2-16x+12}\right) $ by each term in $ \left( x+2i+2\right) $. $$ \left( \color{blue}{4x^2-16x+12}\right) \cdot \left( x+2i+2\right) = 4x^3+8ix^2+8x^2-16x^2-32ix-32x+12x+24i+24 $$ |
⑤ | Combine like terms: $$ 4x^3+8ix^2+ \color{blue}{8x^2} \color{blue}{-16x^2} -32ix \color{red}{-32x} + \color{red}{12x} +24i+24 = 8ix^2+4x^3-32ix \color{blue}{-8x^2} +24i \color{red}{-20x} +24 $$ |
⑥ | Multiply each term of $ \left( \color{blue}{8ix^2+4x^3-32ix-8x^2+24i-20x+24}\right) $ by each term in $ \left( x-2i+2\right) $. $$ \left( \color{blue}{8ix^2+4x^3-32ix-8x^2+24i-20x+24}\right) \cdot \left( x-2i+2\right) = \\ = \cancel{8ix^3}-16i^2x^2+16ix^2+4x^4 -\cancel{8ix^3}+ \cancel{8x^3}-32ix^2+64i^2x-64ix -\cancel{8x^3}+16ix^2-16x^2+24ix-48i^2+ \cancel{48i}-20x^2+40ix-40x+24x -\cancel{48i}+48 $$ |
⑦ | Combine like terms: $$ \, \color{blue}{ \cancel{8ix^3}} \,-16i^2x^2+ \color{green}{16ix^2} +4x^4 \, \color{blue}{ -\cancel{8ix^3}} \,+ \, \color{orange}{ \cancel{8x^3}} \, \color{red}{-32ix^2} +64i^2x \color{green}{-64ix} \, \color{orange}{ -\cancel{8x^3}} \,+ \color{red}{16ix^2} \color{orange}{-16x^2} + \color{blue}{24ix} -48i^2+ \, \color{red}{ \cancel{48i}} \, \color{orange}{-20x^2} + \color{blue}{40ix} \color{orange}{-40x} + \color{orange}{24x} \, \color{red}{ -\cancel{48i}} \,+48 = \\ = -16i^2x^2+4x^4+64i^2x-48i^2 \color{orange}{-36x^2} \color{orange}{-16x} +48 $$ |