Tap the blue circles to see an explanation.
$$ \begin{aligned}4(-2i)\cdot(1-2i)& \xlongequal{ }-8i\cdot(1-2i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-8i+16i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-8i-16\end{aligned} $$ | |
① | Multiply $ \color{blue}{-8i} $ by $ \left( 1-2i\right) $ $$ \color{blue}{-8i} \cdot \left( 1-2i\right) = -8i+16i^2 $$ |
② | $$ 16i^2 = 16 \cdot (-1) = -16 $$ |