Tap the blue circles to see an explanation.
| $$ \begin{aligned}3+5i\cdot\frac{1}{2}+i^5& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3+5i\cdot\frac{1}{2}+i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3+\frac{5i}{2}+i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{5i+6}{2}+i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{7i+6}{2}\end{aligned} $$ | |
| ① | $$ i^5 = i^{4 \cdot 1 + 1} =
\left( i^4 \right)^{ 1 } \cdot i^1 =
1^{ 1 } \cdot i =
i $$ |
| ② | Multiply $5i$ by $ \dfrac{1}{2} $ to get $ \dfrac{ 5i }{ 2 } $. Step 1: Write $ 5i $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 5i \cdot \frac{1}{2} & \xlongequal{\text{Step 1}} \frac{5i}{\color{red}{1}} \cdot \frac{1}{2} \xlongequal{\text{Step 2}} \frac{ 5i \cdot 1 }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 5i }{ 2 } \end{aligned} $$ |
| ③ | Add $3$ and $ \dfrac{5i}{2} $ to get $ \dfrac{ \color{purple}{ 5i+6 } }{ 2 }$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ④ | Add $ \dfrac{5i+6}{2} $ and $ i $ to get $ \dfrac{ \color{purple}{ 7i+6 } }{ 2 }$. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |