Tap the blue circles to see an explanation.
$$ \begin{aligned}3i^3-9i^2-6i+4+\frac{2}{i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-3i+9-6i+4+\frac{2}{i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-9i+13+\frac{2}{i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-9i^2+13i+2}{i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{9+13i+2}{i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{13i+11}{i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}13-11i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}-11i+13\end{aligned} $$ | |
① | $$ 3i^3 = 3 \cdot \color{blue}{i^2} \cdot i =
3 \cdot ( \color{blue}{-1}) \cdot i =
-3 \cdot \, i $$ |
② | $$ -9i^2 = -9 \cdot (-1) = 9 $$ |
③ | Combine like terms: $$ \color{blue}{-3i} + \color{red}{9} \color{blue}{-6i} + \color{red}{4} = \color{blue}{-9i} + \color{red}{13} $$ |
④ | Step 1: Write $ -9i+13 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑤ | $$ -9i^2 = -9 \cdot (-1) = 9 $$ |
⑥ | $$ \color{blue}{9} +13i+ \color{blue}{2} = 13i+ \color{blue}{11} $$ |
⑦ | Divide $ \, 11+13i \, $ by $ \, i \, $ to get $\,\, 13-11i $. ( view steps ) |
⑧ | Combine like terms: $$ -11i+13 = -11i+13 $$ |