Tap the blue circles to see an explanation.
$$ \begin{aligned}3cos(-p\frac{i}{3})+3isin(-p\frac{i}{3})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3cos(-p\frac{i}{3})+3i^2ns(-p\frac{i}{3}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(3cos+3i^2ns)(-p\frac{i}{3}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(3cos+3i^2ns)(-\frac{ip}{3}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-3i^3nps-3ciops}{3}\end{aligned} $$ | |
① | $$ 3 i s i n = 3 i^{1 + 1} n s = 3 i^2 n s $$ |
② | Use the distributive property. |
③ | Step 1: Write $ p $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} p \cdot \frac{i}{3} & \xlongequal{\text{Step 1}} \frac{p}{\color{red}{1}} \cdot \frac{i}{3} \xlongequal{\text{Step 2}} \frac{ p \cdot i }{ 1 \cdot 3 } \xlongequal{\text{Step 3}} \frac{ ip }{ 3 } \end{aligned} $$ |
④ | Step 1: Write $ 3cos+3i^2ns $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3cos+3i^2ns \cdot \frac{-ip}{3} & \xlongequal{\text{Step 1}} \frac{3cos+3i^2ns}{\color{red}{1}} \cdot \frac{-ip}{3} \xlongequal{\text{Step 2}} \frac{ \left( 3cos+3i^2ns \right) \cdot \left( -ip \right) }{ 1 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -3ciops-3i^3nps }{ 3 } = \frac{-3i^3nps-3ciops}{3} \end{aligned} $$ |