Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3}{a}+\frac{1}{6}\frac{a}{2}a+2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3}{a}+\frac{a}{12}a+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3}{a}+\frac{a^2}{12}+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{a^3+36}{12a}+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{a^3+24a+36}{12a}\end{aligned} $$ | |
① | Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{6} \cdot \frac{a}{2} \xlongequal{\text{Step 1}} \frac{ 1 \cdot a }{ 6 \cdot 2 } \xlongequal{\text{Step 2}} \frac{ a }{ 12 } \end{aligned} $$ |
② | Step 1: Write $ a $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{a}{12} \cdot a & \xlongequal{\text{Step 1}} \frac{a}{12} \cdot \frac{a}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ a \cdot a }{ 12 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ a^2 }{ 12 } \end{aligned} $$ |
③ | To add raitonal expressions, both fractions must have the same denominator. |
④ | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |