Tap the blue circles to see an explanation.
$$ \begin{aligned}3(cos\cdot4.5+isin\cdot4.5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3(cos\cdot4.5+i^2ns\cdot4.5) \xlongequal{ } \\[1 em] & \xlongequal{ }3(4cos+4i^2ns) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}12cos+12i^2ns \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}12i^2ns+12cos\end{aligned} $$ | |
① | $$ i s i n = i^{1 + 1} n s = i^2 n s $$ |
② | Multiply $ \color{blue}{3} $ by $ \left( 4cos+4i^2ns\right) $ $$ \color{blue}{3} \cdot \left( 4cos+4i^2ns\right) = 12cos+12i^2ns $$ |
③ | Combine like terms: $$ 12i^2ns+12cos = 12i^2ns+12cos $$ |