Tap the blue circles to see an explanation.
$$ \begin{aligned}2xj^4-3yj^3+\frac{(1-2j)^2}{j^4}+j^5& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2xj^4-3yj^3+\frac{1-4j+4j^2}{j^4}+j^5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2j^8x-3j^7y+4j^2-4j+1}{j^4}+j^5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{j^9+2j^8x-3j^7y+4j^2-4j+1}{j^4}\end{aligned} $$ | |
① | Find $ \left(1-2j\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 1 } $ and $ B = \color{red}{ 2j }$. $$ \begin{aligned}\left(1-2j\right)^2 = \color{blue}{1^2} -2 \cdot 1 \cdot 2j + \color{red}{\left( 2j \right)^2} = 1-4j+4j^2\end{aligned} $$ |
② | Step 1: Write $ 2j^4x-3j^3y $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ j^5 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |