Tap the blue circles to see an explanation.
$$ \begin{aligned}2 \cdot \frac{i}{sinp\frac{i}{n}+isin(p\frac{i}{2n})^2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2 \cdot \frac{i}{sin\frac{ip}{n}+i^2sn(p\frac{i}{2n})^2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}2 \cdot \frac{i}{\frac{i^2nps}{n}+i^2sn(p\frac{i}{2n})^2}\end{aligned} $$ | |
① | Step 1: Write $ p $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} p \cdot \frac{i}{n} & \xlongequal{\text{Step 1}} \frac{p}{\color{red}{1}} \cdot \frac{i}{n} \xlongequal{\text{Step 2}} \frac{ p \cdot i }{ 1 \cdot n } \xlongequal{\text{Step 3}} \frac{ ip }{ n } \end{aligned} $$ |
② | $$ i s i = i^{1 + 1} s = i^2 s $$ |
③ | Step 1: Write $ ins $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} ins \cdot \frac{ip}{n} & \xlongequal{\text{Step 1}} \frac{ins}{\color{red}{1}} \cdot \frac{ip}{n} \xlongequal{\text{Step 2}} \frac{ ins \cdot ip }{ 1 \cdot n } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ i^2nps }{ n } \end{aligned} $$ |
④ | $$ i s i = i^{1 + 1} s = i^2 s $$ |