Tap the blue circles to see an explanation.
$$ \begin{aligned}15 \cdot \frac{a^2}{a^2+6a-16}\cdot8-4\frac{a}{3a}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{15a^2}{a^2+6a-16}\cdot8-\frac{4a}{3a} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{120a^2}{a^2+6a-16}-\frac{4a}{3a} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{356a^3-24a^2+64a}{3a^3+18a^2-48a} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{356a^2-24a+64}{3a^2+18a-48}\end{aligned} $$ | |
① | Step 1: Write $ 15 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 15 \cdot \frac{a^2}{a^2+6a-16} & \xlongequal{\text{Step 1}} \frac{15}{\color{red}{1}} \cdot \frac{a^2}{a^2+6a-16} \xlongequal{\text{Step 2}} \frac{ 15 \cdot a^2 }{ 1 \cdot \left( a^2+6a-16 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 15a^2 }{ a^2+6a-16 } \end{aligned} $$ |
② | Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4 \cdot \frac{a}{3a} & \xlongequal{\text{Step 1}} \frac{4}{\color{red}{1}} \cdot \frac{a}{3a} \xlongequal{\text{Step 2}} \frac{ 4 \cdot a }{ 1 \cdot 3a } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4a }{ 3a } \end{aligned} $$ |
③ | Step 1: Write $ 8 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{15a^2}{a^2+6a-16} \cdot 8 & \xlongequal{\text{Step 1}} \frac{15a^2}{a^2+6a-16} \cdot \frac{8}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 15a^2 \cdot 8 }{ \left( a^2+6a-16 \right) \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 120a^2 }{ a^2+6a-16 } \end{aligned} $$ |
④ | Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4 \cdot \frac{a}{3a} & \xlongequal{\text{Step 1}} \frac{4}{\color{red}{1}} \cdot \frac{a}{3a} \xlongequal{\text{Step 2}} \frac{ 4 \cdot a }{ 1 \cdot 3a } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4a }{ 3a } \end{aligned} $$ |
⑤ | To subtract raitonal expressions, both fractions must have the same denominator. |