Tap the blue circles to see an explanation.
$$ \begin{aligned}15 \cdot \frac{a^2}{a^2+6a-16}\frac{8-4a}{3a}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{15a^2}{a^2+6a-16}\frac{8-4a}{3a} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-\frac{60a^2}{3a^2+24a}\end{aligned} $$ | |
① | Step 1: Write $ 15 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 15 \cdot \frac{a^2}{a^2+6a-16} & \xlongequal{\text{Step 1}} \frac{15}{\color{red}{1}} \cdot \frac{a^2}{a^2+6a-16} \xlongequal{\text{Step 2}} \frac{ 15 \cdot a^2 }{ 1 \cdot \left( a^2+6a-16 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 15a^2 }{ a^2+6a-16 } \end{aligned} $$ |
② | Step 1: Factor numerators and denominators. Step 2: Cancel common factors. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{15a^2}{a^2+6a-16} \cdot \frac{8-4a}{3a} & \xlongequal{\text{Step 1}} \frac{ 15a^2 }{ \left( a+8 \right) \cdot \color{red}{ \left( a-2 \right) } } \cdot \frac{ \left( -4 \right) \cdot \color{red}{ \left( a-2 \right) } }{ 3a } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 15a^2 }{ a+8 } \cdot \frac{ -4 }{ 3a } \xlongequal{\text{Step 3}} \frac{ 15a^2 \cdot \left( -4 \right) }{ \left( a+8 \right) \cdot 3a } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ -60a^2 }{ 3a^2+24a } \end{aligned} $$ |