Tap the blue circles to see an explanation.
$$ \begin{aligned}1-\frac{1}{1-\frac{1}{1+i}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}1-\frac{1}{\frac{i}{i+1}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}1-\frac{1}{\frac{1+i}{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}1-\frac{2}{i+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{i-1}{i+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}i\end{aligned} $$ | |
① | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
② | Divide $ \, i \, $ by $ \, 1+i \, $ to get $\,\, \dfrac{1+i}{2} $. ( view steps ) |
③ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ 1 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{ \frac{\color{blue}{1+i}}{\color{blue}{2}} } & \xlongequal{\text{Step 1}} 1 \cdot \frac{\color{blue}{2}}{\color{blue}{1+i}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{1}{\color{red}{1}} \cdot \frac{2}{1+i} \xlongequal{\text{Step 3}} \frac{ 1 \cdot 2 }{ 1 \cdot \left( 1+i \right) } \xlongequal{\text{Step 4}} \frac{ 2 }{ 1+i } = \\[1ex] &= \frac{2}{i+1} \end{aligned} $$ |
④ | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
⑤ | Divide $ \, -1+i \, $ by $ \, 1+i \, $ to get $\,\, i $. ( view steps ) |