Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{20}+\frac{3}{20}i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{20}+\frac{3i}{20} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3i+1}{20}\end{aligned} $$ | |
① | Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{20} \cdot i & \xlongequal{\text{Step 1}} \frac{3}{20} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot i }{ 20 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3i }{ 20 } \end{aligned} $$ |
② | To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{1}{20} + \frac{3i}{20} & = \frac{1}{\color{blue}{20}} + \frac{3i}{\color{blue}{20}} =\frac{ 1 + 3i }{ \color{blue}{ 20 }} = \\[1ex] &= \frac{3i+1}{20} \end{aligned} $$ |