| $$ \begin{aligned}\frac{1}{(s+2i)^2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{s^2+4is+4i^2}\end{aligned} $$ | |
| ① | Find $ \left(s+2i\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ s } $ and $ B = \color{red}{ 2i }$. $$ \begin{aligned}\left(s+2i\right)^2 = \color{blue}{s^2} +2 \cdot s \cdot 2i + \color{red}{\left( 2i \right)^2} = s^2+4is+4i^2\end{aligned} $$ |