Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{abci(abc\frac{i}{d}+f)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{abci(\frac{abci}{d}+f)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{1}{abci\frac{abci+df}{d}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{1}{\frac{a^2b^2c^2i^2+abcdfi}{d}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{d}{a^2b^2c^2i^2+abcdfi}\end{aligned} $$ | |
① | Step 1: Write $ abc $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} abc \cdot \frac{i}{d} & \xlongequal{\text{Step 1}} \frac{abc}{\color{red}{1}} \cdot \frac{i}{d} \xlongequal{\text{Step 2}} \frac{ abc \cdot i }{ 1 \cdot d } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ abci }{ d } \end{aligned} $$ |
② | Step 1: Write $ f $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ abci $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} abci \cdot \frac{abci+df}{d} & \xlongequal{\text{Step 1}} \frac{abci}{\color{red}{1}} \cdot \frac{abci+df}{d} \xlongequal{\text{Step 2}} \frac{ abci \cdot \left( abci+df \right) }{ 1 \cdot d } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ a^2b^2c^2i^2+abcdfi }{ d } \end{aligned} $$ |
④ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ 1 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{ \frac{\color{blue}{a^2b^2c^2i^2+abcdfi}}{\color{blue}{d}} } & \xlongequal{\text{Step 1}} 1 \cdot \frac{\color{blue}{d}}{\color{blue}{a^2b^2c^2i^2+abcdfi}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{1}{\color{red}{1}} \cdot \frac{d}{a^2b^2c^2i^2+abcdfi} \xlongequal{\text{Step 3}} \frac{ 1 \cdot d }{ 1 \cdot \left( a^2b^2c^2i^2+abcdfi \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ d }{ a^2b^2c^2i^2+abcdfi } \end{aligned} $$ |