Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{2pn(2pi\frac{n}{t}+b)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{2pn(\frac{2inp}{t}+b)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{1}{2pn\frac{2inp+bt}{t}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{1}{\frac{4in^2p^2+2bnpt}{t}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{t}{4in^2p^2+2bnpt}\end{aligned} $$ | |
① | Step 1: Write $ 2ip $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2ip \cdot \frac{n}{t} & \xlongequal{\text{Step 1}} \frac{2ip}{\color{red}{1}} \cdot \frac{n}{t} \xlongequal{\text{Step 2}} \frac{ 2ip \cdot n }{ 1 \cdot t } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2inp }{ t } \end{aligned} $$ |
② | Step 1: Write $ b $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ 2np $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2np \cdot \frac{2inp+bt}{t} & \xlongequal{\text{Step 1}} \frac{2np}{\color{red}{1}} \cdot \frac{2inp+bt}{t} \xlongequal{\text{Step 2}} \frac{ 2np \cdot \left( 2inp+bt \right) }{ 1 \cdot t } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4in^2p^2+2bnpt }{ t } \end{aligned} $$ |
④ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ 1 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{ \frac{\color{blue}{4in^2p^2+2bnpt}}{\color{blue}{t}} } & \xlongequal{\text{Step 1}} 1 \cdot \frac{\color{blue}{t}}{\color{blue}{4in^2p^2+2bnpt}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{1}{\color{red}{1}} \cdot \frac{t}{4in^2p^2+2bnpt} \xlongequal{\text{Step 3}} \frac{ 1 \cdot t }{ 1 \cdot \left( 4in^2p^2+2bnpt \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ t }{ 4in^2p^2+2bnpt } \end{aligned} $$ |