Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{1}{2+3i}}{1+2i+\frac{1}{2}i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{1}{2+3i}}{1+2i+\frac{i}{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{1}{2+3i}}{\frac{5i+2}{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2}{15i^2+16i+4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{2}{-15+16i+4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{2}{16i-11}\end{aligned} $$ | |
① | Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot i & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot i }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ i }{ 2 } \end{aligned} $$ |
② | Step 1: Write $ 1+2i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{1}{2+3i} }{ \frac{\color{blue}{5i+2}}{\color{blue}{2}} } & \xlongequal{\text{Step 1}} \frac{1}{2+3i} \cdot \frac{\color{blue}{2}}{\color{blue}{5i+2}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 1 \cdot 2 }{ \left( 2+3i \right) \cdot \left( 5i+2 \right) } \xlongequal{\text{Step 3}} \frac{ 2 }{ 10i+4+15i^2+6i } = \\[1ex] &= \frac{2}{15i^2+16i+4} \end{aligned} $$ |
④ | $$ 15i^2 = 15 \cdot (-1) = -15 $$ |
⑤ | $$ \color{blue}{-15} +16i+ \color{blue}{4} = 16i \color{blue}{-11} $$ |