Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{\frac{1}{3000}+\frac{1}{600}i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{\frac{1}{3000}+\frac{i}{600}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{1}{\frac{5i+1}{3000}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{3000}{5i+1}\end{aligned} $$ | |
① | Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{600} \cdot i & \xlongequal{\text{Step 1}} \frac{1}{600} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot i }{ 600 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ i }{ 600 } \end{aligned} $$ |
② | To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ 1 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{ \frac{\color{blue}{5i+1}}{\color{blue}{3000}} } & \xlongequal{\text{Step 1}} 1 \cdot \frac{\color{blue}{3000}}{\color{blue}{5i+1}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{1}{\color{red}{1}} \cdot \frac{3000}{5i+1} \xlongequal{\text{Step 3}} \frac{ 1 \cdot 3000 }{ 1 \cdot \left( 5i+1 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 3000 }{ 5i+1 } \end{aligned} $$ |