Tap the blue circles to see an explanation.
$$ \begin{aligned}-9i(6i+8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(54i^2+72i) \xlongequal{ } \\[1 em] & \xlongequal{ }-(-54+72i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}54-72i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-72i+54\end{aligned} $$ | |
① | Multiply $ \color{blue}{9i} $ by $ \left( 6i+8\right) $ $$ \color{blue}{9i} \cdot \left( 6i+8\right) = 54i^2+72i $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(-54+72i \right) = 54-72i $$ |
③ | Combine like terms: $$ -72i+54 = -72i+54 $$ |