Tap the blue circles to see an explanation.
$$ \begin{aligned}-2(-3+2i)^3& \xlongequal{ }-2(8i^3-36i^2+54i-27) \xlongequal{ } \\[1 em] & \xlongequal{ }-2(-8i+36+54i-27) \xlongequal{ } \\[1 em] & \xlongequal{ }-2(46i+9) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(92i+18) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-92i-18\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( 46i+9\right) $ $$ \color{blue}{2} \cdot \left( 46i+9\right) = 92i+18 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(92i+18 \right) = -92i-18 $$ |