Tap the blue circles to see an explanation.
$$ \begin{aligned}-\frac{1}{2}i^3(sqrt-9-4)-3i^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-\frac{1}{2}\cdot-i(1qrst-13)-(-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(-\frac{i}{2})(1qrst-13)-(-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-iqrst+13i}{2}-(-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-iqrst+13i+6}{2}\end{aligned} $$ | |
① | $$ 3i^2 = 3 \cdot (-1) = -3 $$ |
② | Step 1: Write $ -i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot -i & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{-i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( -i \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -i }{ 2 } \end{aligned} $$ |
③ | Step 1: Write $ qrst-13 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-i}{2} \cdot qrst-13 & \xlongequal{\text{Step 1}} \frac{-i}{2} \cdot \frac{qrst-13}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -i \right) \cdot \left( qrst-13 \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -iqrst+13i }{ 2 } \end{aligned} $$ |
④ | Step 1: Write $ -3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |