Tap the blue circles to see an explanation.
$$ \begin{aligned}-\frac{1}{2}\cdot(1+i)\cdot2i^{10}& \xlongequal{ }-\frac{1}{2}\cdot(1+i)\cdot(-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{i+1}{2}\cdot(-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-2i-2}{2}\end{aligned} $$ | |
① | Step 1: Write $ 1+i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot 1+i & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{1+i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( 1+i \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1+i }{ 2 } = \frac{i+1}{2} \end{aligned} $$ |
② | Step 1: Write $ -2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{i+1}{2} \cdot -2 & \xlongequal{\text{Step 1}} \frac{i+1}{2} \cdot \frac{-2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( i+1 \right) \cdot \left( -2 \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -2i-2 }{ 2 } \end{aligned} $$ |