Tap the blue circles to see an explanation.
$$ \begin{aligned}-3i\cdot(4-2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(12i-6i^2) \xlongequal{ } \\[1 em] & \xlongequal{ }-(12i+6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-12i-6\end{aligned} $$ | |
① | Multiply $ \color{blue}{3i} $ by $ \left( 4-2i\right) $ $$ \color{blue}{3i} \cdot \left( 4-2i\right) = 12i-6i^2 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left(12i+6 \right) = -12i-6 $$ |