Tap the blue circles to see an explanation.
$$ \begin{aligned}x+iy-\frac{(x+iy)^3}{3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x+iy-\frac{x^3+3ix^2y+3i^2xy^2+i^3y^3}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-i^3y^3-3i^2xy^2-3ix^2y-x^3+3iy+3x}{3}\end{aligned} $$ | |
① | Find $ \left(x+iy\right)^3 $ using formula $$ (A + B) = A^3 + 3A^2B + 3AB^2 + B^3 $$where $ A = x $ and $ B = iy $. $$ \left(x+iy\right)^3 = x^3+3 \cdot x^2 \cdot iy + 3 \cdot x \cdot \left( iy \right)^2+\left( iy \right)^3 = x^3+3ix^2y+3i^2xy^2+i^3y^3 $$ |
② | Step 1: Write $ x+iy $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |