$$ \begin{aligned}\frac{x+iy}{i}b& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{biy+bx}{i}\end{aligned} $$ | |
① | Step 1: Write $ b $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{x+iy}{i} \cdot b & \xlongequal{\text{Step 1}} \frac{x+iy}{i} \cdot \frac{b}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( x+iy \right) \cdot b }{ i \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ bx+biy }{ i } = \frac{biy+bx}{i} \end{aligned} $$ |