Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{x^2}{x+4}}{\frac{16}{x^2}+\frac{4}{x}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{x^2}{x+4}}{\frac{4x^2+16x}{x^3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^5}{4x^3+32x^2+64x}\end{aligned} $$ | |
① | To add raitonal expressions, both fractions must have the same denominator. |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{x^2}{x+4} }{ \frac{\color{blue}{4x^2+16x}}{\color{blue}{x^3}} } & \xlongequal{\text{Step 1}} \frac{x^2}{x+4} \cdot \frac{\color{blue}{x^3}}{\color{blue}{4x^2+16x}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ x^2 \cdot x^3 }{ \left( x+4 \right) \cdot \left( 4x^2+16x \right) } \xlongequal{\text{Step 3}} \frac{ x^5 }{ 4x^3+16x^2+16x^2+64x } = \\[1ex] &= \frac{x^5}{4x^3+32x^2+64x} \end{aligned} $$ |