Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{v-10}{80\cdot(1+i)}+\frac{v}{80\cdot(1+i)}+\frac{v-a}{-80i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(v-10+v)\cdot\frac{1}{80\cdot(1+i)}+\frac{v-a}{-80i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(v-10+v)\cdot\frac{1}{80+80i}+\frac{v-a}{-80i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(2v-10)\cdot\frac{1}{80+80i}+\frac{v-a}{-80i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{v-5}{40i+40}+\frac{v-a}{-80i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-40ai-40iv-40a+400i+40v}{-3200i^2-3200i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{-40ai-40iv-40a+400i+40v}{3200-3200i} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{-ai-iv-a+10i+v}{80-80i}\end{aligned} $$ | |
① | Use the distributive property. |
② | Multiply $ \color{blue}{80} $ by $ \left( 1+i\right) $ $$ \color{blue}{80} \cdot \left( 1+i\right) = 80+80i $$ |
③ | Combine like terms: $$ \color{blue}{v} -10+ \color{blue}{v} = \color{blue}{2v} -10 $$ |
④ | Step 1: Write $ 2v-10 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} 2v-10 \cdot \frac{1}{80+80i} & \xlongequal{\text{Step 1}} \frac{2v-10}{\color{red}{1}} \cdot \frac{1}{80+80i} \xlongequal{\text{Step 2}} \frac{ \left( v-5 \right) \cdot \color{blue}{2} }{ 1 } \cdot \frac{ 1 }{ \left( 40i+40 \right) \cdot \color{blue}{2} } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ v-5 }{ 1 } \cdot \frac{ 1 }{ 40i+40 } \xlongequal{\text{Step 4}} \frac{ \left( v-5 \right) \cdot 1 }{ 1 \cdot \left( 40i+40 \right) } = \\[1ex] & \xlongequal{\text{Step 5}} \frac{ v-5 }{ 40i+40 } \end{aligned} $$ |
⑤ | To add raitonal expressions, both fractions must have the same denominator. |
⑥ | $$ -3200i^2 = -3200 \cdot (-1) = 3200 $$ |