Tap the blue circles to see an explanation.
$$ \begin{aligned}(sqrt\cdot2-sqrt-2)(sqrt\cdot8+sqrt-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(1qrst-2)(9qrst-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9q^2r^2s^2t^2-2qrst-18qrst+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}9q^2r^2s^2t^2-20qrst+4\end{aligned} $$ | |
① | Combine like terms: $$ \color{blue}{2qrst} \color{blue}{-qrst} -2 = \color{blue}{qrst} -2 $$Combine like terms: $$ \color{blue}{8qrst} + \color{blue}{qrst} -2 = \color{blue}{9qrst} -2 $$ |
② | Multiply each term of $ \left( \color{blue}{qrst-2}\right) $ by each term in $ \left( 9qrst-2\right) $. $$ \left( \color{blue}{qrst-2}\right) \cdot \left( 9qrst-2\right) = 9q^2r^2s^2t^2-2qrst-18qrst+4 $$ |
③ | Combine like terms: $$ 9q^2r^2s^2t^2 \color{blue}{-2qrst} \color{blue}{-18qrst} +4 = 9q^2r^2s^2t^2 \color{blue}{-20qrst} +4 $$ |