Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{iw+4}{(iw+3)(iw+5)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{iw+4}{i^2w^2+5iw+3iw+15} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{iw+4}{i^2w^2+8iw+15}\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{iw+3}\right) $ by each term in $ \left( iw+5\right) $. $$ \left( \color{blue}{iw+3}\right) \cdot \left( iw+5\right) = i^2w^2+5iw+3iw+15 $$ |
② | $$ i^2w^2+ \color{blue}{5iw} + \color{blue}{3iw} +15 = i^2w^2+ \color{blue}{8iw} +15 $$ |