Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{i^2+3-7i}{5i-1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-1+3-7i}{5i-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-7i+2}{5i-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-37-3i}{26}\end{aligned} $$ | |
① | $$ i^2 = -1 $$ |
② | $$ \color{blue}{-1} + \color{blue}{3} -7i = -7i+ \color{blue}{2} $$ |
③ | Divide $ \, 2-7i \, $ by $ \, -1+5i \, $ to get $\,\, \dfrac{-37-3i}{26} $. ( view steps ) |