Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{c\cdot0r\cdot0iw+1}{c\cdot0l\cdot0(iw)^2+c\cdot0r\cdot0iw+1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{0cirw+1}{0cl1i^2w^2+0criw+1} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{0cirw+1}{0ci^2lw^2+0cirw+1}\end{aligned} $$ | |
① | $$ c \cdot 0 l \cdot 0 = 0 c l $$ |
② | $$ \left( iw \right)^2 = 1^2i^2w^2 = i^2w^2 $$ |
③ | $$ c \cdot 0 r \cdot 0 = 0 c r $$ |