Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{a+bi-i}{1-(a-bi)i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{a+bi-i}{1-(1ai-bi^2)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{a+bi-i}{1-ai+bi^2}\end{aligned} $$ | |
① | $$ \left( \color{blue}{a-bi}\right) \cdot i = ai-bi^2 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( ai-bi^2 \right) = -ai+bi^2 $$ |