Tap the blue circles to see an explanation.
$$ \begin{aligned}(9+8i)\cdot(-3+4i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-27+36i-24i+32i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}32i^2+12i-27\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{9+8i}\right) $ by each term in $ \left( -3+4i\right) $. $$ \left( \color{blue}{9+8i}\right) \cdot \left( -3+4i\right) = -27+36i-24i+32i^2 $$ |
② | Combine like terms: $$ -27+ \color{blue}{36i} \color{blue}{-24i} +32i^2 = 32i^2+ \color{blue}{12i} -27 $$ |