Tap the blue circles to see an explanation.
$$ \begin{aligned}(9+7i)\cdot(6+i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}54+9i+42i+7i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}7i^2+51i+54\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{9+7i}\right) $ by each term in $ \left( 6+i\right) $. $$ \left( \color{blue}{9+7i}\right) \cdot \left( 6+i\right) = 54+9i+42i+7i^2 $$ |
② | Combine like terms: $$ 54+ \color{blue}{9i} + \color{blue}{42i} +7i^2 = 7i^2+ \color{blue}{51i} +54 $$ |