Tap the blue circles to see an explanation.
$$ \begin{aligned}(8+4i)\cdot(11-3i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}88-24i+44i-12i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-12i^2+20i+88\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{8+4i}\right) $ by each term in $ \left( 11-3i\right) $. $$ \left( \color{blue}{8+4i}\right) \cdot \left( 11-3i\right) = 88-24i+44i-12i^2 $$ |
② | Combine like terms: $$ 88 \color{blue}{-24i} + \color{blue}{44i} -12i^2 = -12i^2+ \color{blue}{20i} +88 $$ |