Tap the blue circles to see an explanation.
$$ \begin{aligned}(8-3i)\cdot(9+6i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}72+48i-27i-18i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-18i^2+21i+72\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{8-3i}\right) $ by each term in $ \left( 9+6i\right) $. $$ \left( \color{blue}{8-3i}\right) \cdot \left( 9+6i\right) = 72+48i-27i-18i^2 $$ |
② | Combine like terms: $$ 72+ \color{blue}{48i} \color{blue}{-27i} -18i^2 = -18i^2+ \color{blue}{21i} +72 $$ |