Tap the blue circles to see an explanation.
$$ \begin{aligned}(7+2i)\cdot(2+3i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}14+21i+4i+6i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6i^2+25i+14\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{7+2i}\right) $ by each term in $ \left( 2+3i\right) $. $$ \left( \color{blue}{7+2i}\right) \cdot \left( 2+3i\right) = 14+21i+4i+6i^2 $$ |
② | Combine like terms: $$ 14+ \color{blue}{21i} + \color{blue}{4i} +6i^2 = 6i^2+ \color{blue}{25i} +14 $$ |