Tap the blue circles to see an explanation.
$$ \begin{aligned}(7+i)\cdot(7-i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}49-7i+7i-i^2 \xlongequal{ } \\[1 em] & \xlongequal{ }49 -\cancel{7i}+ \cancel{7i}-i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-i^2+49\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{7+i}\right) $ by each term in $ \left( 7-i\right) $. $$ \left( \color{blue}{7+i}\right) \cdot \left( 7-i\right) = 49 -\cancel{7i}+ \cancel{7i}-i^2 $$ |
② | Combine like terms: $$ 49 \, \color{blue}{ -\cancel{7i}} \,+ \, \color{blue}{ \cancel{7i}} \,-i^2 = -i^2+49 $$ |