Tap the blue circles to see an explanation.
$$ \begin{aligned}(7-6i)\cdot(-8+3i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-56+21i+48i-18i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-18i^2+69i-56\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{7-6i}\right) $ by each term in $ \left( -8+3i\right) $. $$ \left( \color{blue}{7-6i}\right) \cdot \left( -8+3i\right) = -56+21i+48i-18i^2 $$ |
② | Combine like terms: $$ -56+ \color{blue}{21i} + \color{blue}{48i} -18i^2 = -18i^2+ \color{blue}{69i} -56 $$ |