Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{6+5i}{6+5i}\cdot(3+4i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}1\cdot(3+4i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3+4i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4i+3\end{aligned} $$ | |
① | Divide $ \, 6+5i \, $ by $ \, 6+5i \, $ to get $\,\, 1 $. ( view steps ) |
② | Multiply $ \color{blue}{1} $ by $ \left( 3+4i\right) $ $$ \color{blue}{1} \cdot \left( 3+4i\right) = 3+4i $$ |
③ | Combine like terms: $$ 4i+3 = 4i+3 $$ |